Kaidahperkalian dilakukan jika unsur-unsur yang tersedia digunakan secara bersamaan. Berapakah banyaknya bilangan yang terdiri dari 2 angka yang dibentuk dari angka-angka 3,4 dan 5 ? Jawab: P(3,2) = 3! / (3-2)! = 6 bilangan jika A adalah kejadian munculnya bilangan ganjil dan B adalah kejadian munculnya bilangan genap. Tentukan peluang

Istilah faktorial mungkin pertama kali dimunculkan saat kita akan mempelajari materi mengenai prinsip permutasi dan kombinasi. Dalam matematika, faktorial didefinisikan sebagai berikut. Definisi Faktorial Faktorial dari bilangan asli $n$, dinotasikan $n!$ dibaca $n$ faktorial, adalah perkalian semua bilangan bulat positif yang kurang dari atau sama dengan $n$. Secara matematis, ditulis $\begin{aligned} n! & = 1 \times 2 \times 3 \times \cdots \times n-1 \times n \\ & = n \times n-1 \times \cdots \times 3 \times 2 \times 1 \end{aligned}$ Ekspresi faktorial dalam notasi pi hasil kali adalah $n! = \displaystyle \prod_{k=1}^n k.$ Ekspresi faktorial dalam relasi rekurensi adalah $n! = \begin{cases} 1, &~\text{jika}~n = 0 \\ n-1! \times n, &~\text{jika}~n > 0 \end{cases}$ Selanjutnya, didefinisikan bahwa $0! = 1$ dan faktorial dari bilangan negatif tidak terdefinisi tidak memiliki arti. Perhatikan bahwa notasi faktorial menggunakan simbol berupa tanda seru exclamation mark. Konsep faktorial selanjutnya banyak diaplikasikan dalam bidang kombinatorika. Untuk itu, berikut disajikan soal dan pembahasan terkhusus mengenai faktorial yang diharapkan dapat menambah wawasan mengenai materi yang bersangkutan. Soal juga dapat diunduh melalui tautan berikut Download PDF, 171 KB. Poem by Shane Dizzy Sukardy Sekaleng soda menemani saat hujan mulai reda. Kala itu sang pesepeda bagai seorang laskar berkuda, melukiskan jejak dengan hanya sedikit bersabda, mengingat besok adalah hari yang berwarna dan bernada. Bagian Pilihan Ganda Soal Nomor 1 Nilai dari $\dfrac{100! \times 2}{99!}$ adalah $\cdots \cdot$ A. $50$ C. $150$ E. $ B. $100$ D. $200$ Pembahasan Gunakan prinsip faktorial. $\begin{aligned} \dfrac{100! \times 2}{99!} & = \dfrac{100 \times \cancel{99!} \times 2}{\cancel{99!}} \\ & = 100 \times 2 = 200 \end{aligned}$ Jadi, nilai dari $\boxed{\dfrac{100! \times 2}{99!} = 200}$ Jawaban D [collapse] Soal Nomor 2 Hasil dari $\dfrac{11!-10!}{9!}$ adalah $\cdots \cdot$ A. $50$ C. $80$ E. $200$ B. $75$ D. $100$ Pembahasan Dengan menggunakan definisi faktorial dan sifat distributif bilangan, kita akan memperoleh $\begin{aligned} \dfrac{11!-10!}{9!} & = \dfrac{11 \cdot 10!-10!}{9!} \\ & = \dfrac{11-1 \cdot 10!}{9!} \\ & = \dfrac{10 \cdot 10 \cdot \cancel{9!}}{\cancel{9!}} \\ & = 10 \cdot 10 = 100. \end{aligned}$ Jawaban D [collapse] Soal Nomor 3 Hasil dari $\dfrac{15!-14!}{8!-7!}$ adalah $\cdots \cdot$ A. $1$ B. $15 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9$ C. $13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7$ D. $14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 2$ E. $14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7$ Pembahasan Gunakan definisi faktorial dan sifat distributif bilangan. $$\begin{aligned} \dfrac{15!-14!}{8!-7!} & = \dfrac{15 \cdot 14!-14!}{8 \cdot 7!-7!} \\ & = \dfrac{15-1 \cdot 14!}{8-1 \cdot 7!} \\ & = \dfrac{\cancelto{2}{14} \cdot 14!}{\cancel{7} \cdot 7!} \\ & = \dfrac{2 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot \cancel{7!}}{\cancel{7!}} \\ & = 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 2 \end{aligned}$$Jawaban D [collapse] Soal Nomor 4 Nilai dari $\dfrac{32^{9!}}{8^{8!}} \div 16^{9!} \cdot 64^{8!} = \cdots \cdot$ A. $0$ C. $2$ E. $8$ B. $1$ D. $4$ Pembahasan Perhatikan bahwa semua basis pada ekspresi di atas merupakan hasil perpangkatan dari $2$. Jadi, kita ubah semuanya menjadi berbasis $2$, lalu sederhanakan menggunakan sifat-sifat eksponen. $$\begin{aligned} \dfrac{32^{9!}}{8^{8!}} \div 16^{9!} \cdot 64^{8!} & = \dfrac{2^5^{9!}}{2^3^{8!}} \div 2^4^{9!} \cdot 2^6^{8!} \\ & = 2^{5 \cdot 9! -3 \cdot 8!} \div 2^{4 \cdot 9! + 6 \cdot 8!} \\ & = 2^{5 \cdot 9!-3 \cdot 8!-4 \cdot 9!-6 \cdot 8!} \\ & = 2^{5-49!-3+68!} \\ & = 2^{\color{red}{1 \cdot 9!}-\color{blue}{9 \cdot 8!}} \\ & = 2^{\color{red}{9!}-\color{blue}{9!}} = 2^0 = 1 \end{aligned}$$Jadi, nilai dari $\boxed{\dfrac{32^{9!}}{8^{8!}} \div 16^{9!} \cdot 64^{8!} = 1}$ Jawaban B [collapse] Soal Nomor 5 Hasil dari $\dfrac{n-1!}{n!} = \cdots \cdot$ A. $\dfrac{1}{n}$ D. $n-1$ B. $n^2-n$ E. $n$ C. $n-2$ Pembahasan Berdasarkan definisi faktorial, diperoleh $\begin{aligned} \dfrac{n-1!}{n!} & = \dfrac{\cancel{n-1!}}{n \cdot \cancel{n-1!}} \\ & = \dfrac{1}{n} \end{aligned}$ Jadi, hasil dari $\boxed{\dfrac{n-1!}{n!} = \dfrac{1}{n}}$ Jawaban A [collapse] Soal Nomor 6 Nilai $n$ yang memenuhi persamaan $n+3! = 10n+2!$ adalah $\cdots \cdot$ A. $5$ C. $8$ E. $11$ B. $7$ D. $9$ Pembahasan Berdasarkan definisi faktorial, diperoleh $\begin{aligned} n+3! & = 10n+2! \\ n+3 \times \cancel{n+2!} & = 10\cancel{n+2!} \\ n+3 & = 10 \\ n & = 7 \end{aligned}$ Jadi, nilai $n$ yang memenuhi persamaan tersebut adalah $\boxed{7}$ Jawaban B [collapse] Soal Nomor 7 Jika $\dfrac{n!}{n-2!} = 20$, maka nilai dari $n^2+5n-3$ adalah $\cdots \cdot$ A. $23$ C. $42$ E. $52$ B. $32$ D. $47$ Pembahasan Pertama, kita akan mencari nilai $n$ dengan menyelesaikan persamaan $\dfrac{n!}{n-2!} = 20$ menggunakan definisi faktorial. $\begin{aligned} \dfrac{n \times n-1 \times \cancel{n-2!}}{\cancel{n-2!}} & = 20 \\ nn-1 & = 20 \\ n^2-n-20 & = 0 \\ n-5n+4 & = 20 \end{aligned}$ Diperoleh $n = 5$ atau $n = -4$. Karena $n = -4$ mengakibatkan $n!$ tidak terdefinisi, maka kita ambil $n = 5$. Jadi, nilai dari $\boxed{n^2+5n-3 = 5^2+55-3 = 47}$ Jawaban D [collapse] Soal Nomor 8 Jika $\dfrac{n+1!}{n-2!} = \dfrac{n!}{n-4!}$, maka pernyataan berikut yang tepat mengenai nilai $n$ adalah $\cdots \cdot$ A. $n$ merupakan bilangan prima B. $n$ merupakan bilangan dua-digit C. $n$ merupakan bilangan genap D. $n$ merupakan bilangan kelipatan $3$ E. $n$ memiliki lebih dari $2$ faktor Pembahasan Berdasarkan definisi faktorial, diperoleh $$\begin{aligned} \dfrac{n+1!}{n-2!} & = \dfrac{n!}{n-4!} \\ \dfrac{n+1 \times \bcancel{n!}}{n-2 \times n-3 \times \cancel{n-4!}} & = \dfrac{\bcancel{n!}}{\cancel{n-4!}} \\ \dfrac{n+1}{n-2n-3} & = 1 \\ n+1 & = n-2n-3 \\ n+1 & = n^2-5n+6 \\ n^2-6n+5 & = 0 \\ n-5n-1 & = 0 \end{aligned}$$Diperoleh $n=5$ atau $n=1$. Karena $n=1$ mengakibatkan ekspresi $n-2!$ tidak terdefinisi, maka kita ambil $n = 5$. Pernyataan yang benar adalah $n=5$ merupakan bilangan prima. Jawaban A [collapse] Soal Nomor 9 Bentuk sederhana dari $\dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \dfrac{4}{5!} + \cdots + \dfrac{99}{100!}$ adalah $\cdots \cdot$ A. $1-\dfrac{1}{100!}$ D. $1+\dfrac{1}{50!}$ B. $1+\dfrac{1}{100!}$ E. $1-\dfrac{1}{99!}$ C. $1-\dfrac{1}{50!}$ Pembahasan Perhatikan bahwa $\begin{aligned} \dfrac{k}{k+1!} & = \dfrac{k+1}{k+1!}-\dfrac{1}{k+1!} \\ & = \dfrac{\cancel{k+1}}{\cancel{k+1} \times k!} -\dfrac{1}{k+1!} \\ & = \dfrac{1}{k!}-\dfrac{1}{k+1!} \end{aligned}$ Dengan demikian, diperoleh $$\begin{aligned} & \dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \dfrac{4}{5!} + \cdots + \dfrac{99}{100!} \\ & = \left\dfrac{1}{1!}-\cancel{\dfrac{1}{2!}}\right + \left\cancel{\dfrac{1}{2!}}-\cancel{\dfrac{1}{3!}}\right+\cdots+\left\cancel{\dfrac{1}{99!}}-\dfrac{1}{100!}\right \\ & = 1-\dfrac{1}{100!} \end{aligned}$$Catatan Prinsip pencoretan kanselasi sehingga suku-sukunya saling menghilangkan seperti di atas dikenal dengan istilah Prinsip Teleskopik. Jadi, bentuk sederhananya adalah $\boxed{1-\dfrac{1}{100!}}$ Jawaban A [collapse] Soal Nomor 10 Misalkan $N = 1!^3 + 2!^3 + 3!^3$ $+ \cdots + 2018!^3$. Jika tiga digit terakhir dari $N$ adalah $\overline{abc}$, maka nilai $a+b+c=\cdots \cdot$ A. $9$ C. $11$ E. $13$ B. $10$ D. $12$ Pembahasan Tiga digit terakhir dari $N$ sama dengan tiga digit terakhir dari $Q = 1!^3+2!^3+3!^3+4!^3.$ Ini terjadi karena untuk $m > 4$, berlaku $10~~m!$, artinya $m!$ habis dibagi $10$. Akibatnya, $1000~~m!^3$. Dengan kata lain, tiga digit terakhir dari $5!^3, 6!^3$, dan seterusnya adalah $000$. Sekarang, perhatikan bahwa $\begin{aligned} Q & = 1!^3+2!^3+3!^3+4!^3 \\ & = 1^3 + 2^3 + 6^3 + 24^3 \\ & = 1 + 8 + 216 + = 14.\color{red}{049} \end{aligned}$ Jadi, tiga digit terakhir dari $N$ adalah $\overline{abc} = 049$ sehingga $\boxed{a+b+c=0+4+9=13}$ Jawaban E [collapse] Soal Nomor 11 Sisa pembagian $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3!$ $+ \cdots + 99 \cdot 99! + 100 \cdot 100!$ oleh $101$ adalah $\cdots \cdot$ A. $0$ C. $21$ E. $100$ B. $11$ D. $99$ Pembahasan Misalkan $$\begin{aligned} x & = 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \cdots + 99 \cdot 99! + 100 \cdot 100! \\ y & = 2 \cdot 1! + 3 \cdot 2! + 4 \cdot 3! + \cdots + 100 \cdot 99! + 101 \cdot 100! \end{aligned}$$Dengan demikian, kita peroleh $$\begin{aligned} \color{red}{y}-x & = 2-1 \cdot 1! + 3-2 \cdot 2! + 4-3 \cdot 3! + \cdots + 100-99 \cdot 99! + 101-100 \cdot 100! \\ & = 1 \cdot 1! + 1 \cdot 2! + 1 \cdot 3! + \cdots + 1 \cdot 99! + 1 \cdot 100! \\ & = 1! + 2! + 3! + \cdots + 99! + 100! \end{aligned}$$Perhatikan bahwa $y$ juga dapat ditulis dalam ekspresi lain, yaitu $y = 2! + 3! + 4! + \cdots + 100! + 101!$ Sekarang, substitusi ekspresi $y$ ini ke persamaan sebelumnya mengganti nilai $y$ yang diberi warna merah di atas. $$\begin{aligned} \color{red}{y}-x & = 1!+2!+3!+\cdots+99!+100! \\ 2! + 3! + 4! + \cdots + 100!+101!-x & = 1!+2!+3!+\cdots+99!+100! \\ x & = \cancel{2!+3!+4!+\cdots+100!}+101!-1!+\cancel{2!+3!+\cdots+99!+100!} \\ x & = 101!-1 \end{aligned}$$Perhatikan bahwa $101!$ jelas habis dibagi $101$ karena memuat faktor $101$. Ketika dikurangi $\color{blue}{1}$, maka sisa pembagiannya menjadi $101-\color{blue}{1} = 100$. Jadi, sisa pembagian $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3!$ $+ \cdots + 99 \cdot 99! + 100 \cdot 100!$ oleh $101$ adalah $\boxed{100}$ Jawaban E [collapse] Soal Nomor 12 Sisa hasil bagi $1^2 \cdot 2! + 2^2 \cdot 3! + 3^2 \cdot 4! + \cdots + \cdot oleh $ adalah $\cdots \cdot$ A. $1$ D. $7$ B. $2$ E. $ C. $5$ Pembahasan Misalkan $$P = 1^2 \cdot 2! + 2^2 \cdot 3! + 3^2 \cdot 4! + \cdots + \cdot demikian, diperoleh $$\begin{aligned} P & = \displaystyle \sum_{k=1}^{ k^2k+1! \\ & = \sum_{k=1}^{ [k+2^2-4k+1]k+1! \\ & = \sum_{k=1}^{ k+2^2k+1!-\sum_{k=1}^{ 4k+1k+1! \\ & = \sum_{k=1}^{ k+2k+2!-4\sum_{k=1}^{ k+1k+1! \\ & = \sum_{k=3}^{ k \cdot k!-4\sum_{k=2}^{ k \cdot k! \\ & = \left\sum_{k=1}^{ k \cdot k!-1 \cdot 1!-2\cdot2!\right -4\left\sum_{k=1}^{ k \cdot k!-1\cdot 1!\right. \end{aligned}$$Dengan menggunakan fakta bahwa $\displaystyle \sum_{k=1}^n k \cdot k! = n+1!-1$ dapat dibuktikan dengan menggunakan induksi, didapat $$\begin{aligned} P & = \\ & = \cdot + 2. \end{aligned}$$Dari bentuk terakhir, dapat dengan mudah diketahui bahwa sisa hasil bagi $P$ oleh $ adalah $\boxed{2}.$ Hal ini terjadi karena $ dan $4 \cdot keduanya memuat faktor $ sehingga $ membagi keduanya. Jawaban B [collapse] Soal Nomor 13 Jika $\dfrac{120!+1!-5!!!}{120!-1!} = \left[a!!\right]^b$, maka nilai dari $a-b! = \cdots \cdot$ A. $1$ C. $3$ E. $6$ B. $2$ D. $5$ Pembahasan Gunakan sifat faktorial berikut. $\boxed{n! = nn-1!}$ Perhatikan bahwa $5! = 120$. Kita peroleh $$\begin{aligned} \dfrac{120!+1!-120!!}{120!-1!} & = \left[a!!\right]^b \\ \dfrac{120!+1120!\cancel{120!-1!}-120!\cancel{120!-1!}}{\cancel{120!-1!}} & = \left[a!!\right]^b \\ 120!+1!120!-120! & = \left[a!!\right]^b \\ 120!120! + 1-1 & = \left[a!!\right]^b \\ 120!120! & = \left[a!!\right]^b \\ 120!^2 = 5!!^2 & = \left[a!!\right]^b \end{aligned}$$Diperoleh $a = 5$ dan $b = 2$ sehingga $\boxed{a-b! = 5-2! = 3! = 6}$ Jawaban E [collapse] Soal Nomor 14 Diketahui $P = 10 \cdot 9!^{\frac12}$, $Q = 9 \cdot 10!^{\frac12}$, dan $R = 11!^{\frac12}$ dengan $n! = 1 \cdot 2 \cdot 3 \cdots n-1n$. Urutan yang benar dari ketiga bilangan di atas adalah $\cdots \cdot$ A. $R R^2 > P^2$, mengimplikasikan bahwa $\boxed{P b$. Misalkan $\begin{aligned}N & = \dfrac{a!}{b!} \\ & = aa-1a-2\cdotsb+1. \end{aligned}$ Perhatikan bahwa $N$ merupakan hasil kali dari $a-b+1+1 = a-b$ bilangan asli berurutan. Andaikan kita pilih $a = 5$ dan $b = 2$, diperoleh $N = \dfrac{5!}{2!} = 5 \times 4 \times 3.$ Bilangan ini merupakan kelipatan $4$, tetapi bukan kelipatan $8$. Jadi, $3$ adalah salah satu nilai $a-b$ yang mungkin. Sekarang, jika $a-b = 4$, maka itu artinya $N$ merupakan hasil kali dari $4$ bilangan asli berurutan, sebut saja $pp+1p+2p+3$. Jika $p$ ganjil, maka $p+1$ dan $p+3$ kelipatan $2$ dan salah satunya pasti merupakan kelipatan $4$ sehingga $N$ habis dibagi $8.$ Jika $p$ genap, maka $p$ dan $p+2$ kelipatan $2$ dan salah satunya pasti merupakan kelipatan $4$ sehingga $N$ habis dibagi $8$. Dengan demikian, dapat ditarik suatu proposisi bahwa perkalian empat bilangan asli berurutan habis dibagi $8.$ Akibatnya, nilai $a-b$ terbesar agar $\dfrac{a!}{b!}$ merupakan bilangan kelipatan $4$, tetapi bukan kelipatan $8$, adalah $\boxed{3}$ [collapse] Soal Nomor 11 Terdapat $a_2, a_3, a_4$, $a_5, a_6$, dan $a_7$ yang memenuhi $\dfrac57 = \dfrac{a_2}{2!} + \dfrac{a_3}{3!}$ $+ \dfrac{a_4}{4!} + \dfrac{a_5}{5!} + \dfrac{a_6}{6!}$ $+ \dfrac{a_7}{7!},$ untuk $0 \leq a_i n$ sehingga nilai $k$ terkecil adalah $n+1.$ Dengan demikian, $n-4$ bilangan bulat berurutan itu dimulai dari bilangan $1+5=6$, yaitu $6 \times 7 \times 8 \times \cdots \times n+1 = n!.$ Bila kita selesaikan persamaan tersebut mencari nilai $n$, kita akan memperoleh $\begin{aligned} \dfrac{n+1!}{5!} & = n! \\ \dfrac{n+1 \times n!}{5!} & = n! \\ n+1 & = 5! \\ n & = 5!-1 = 119. \end{aligned}$ Jadi, nilai $n$ terbesar adalah $119$ dan perhatikan bahwa memang $119!$ bisa ditulis menjadi $6 \times 7 \times 8 \times \cdots \times 120$ hasil kali $115$ bilangan bulat positif berurutan. [collapse] Soal Nomor 18 Tentukan banyak tripel bilangan bulat $a, b, c$ yang memenuhi $a! + b! = c!$. Pembahasan Nilai $a, b, c$ pada persamaan $a! +b! =c!$ dipenuhi oleh $0,0,2, 1,0,2, 0,1,2$, dan $1,1,2.$ Misalkan $c$ adalah bilangan bulat positif yang lebih dari dua, sebutlah $n$ dengan $n > 2.$ Sekarang, ambil $a = b = n -1$, yang merupakan pasangan bilangan terbesar agar bila dijumlahkan dapat mencapai nilai di ruas kanan. Jadi, dapat ditulis $\begin{aligned} & n-1! + n-1! = n! \\ & 2n-1! < nn-1! = n!. \end{aligned}$ Jadi, tidak ada nilai $c$ yang dipenuhi oleh $a$ dan $b$ sehingga persamaan itu benar. Dengan demikian, hanya ada $4$ pasangan bilangan $a, b, c$ yang memenuhi persamaan $a! + b! = c!$. [collapse] Soal Nomor 19 Tentukan hasil dari $$\dfrac{2+3^2}{1!+2!+3!+4!}+\dfrac{3+4^2}{2!+3!+4!+5!}+\cdots + \dfrac{2013+2014^2}{ Pembahasan Pertama, nyatakan penjumlahan tersebut dalam notasi sigma, lalu kita sederhanakan dan terapkan prinsip teleskopik. Bentuk di atas setara dengan ekspresi berikut. $$\begin{aligned} & \displaystyle \sum_{n=1}^{ \dfrac{n+1+n+2^2}{n!+n+1!+n+2!+n+3!} \\ & = \sum_{n=1}^{ \dfrac{n^2+5n+5}{n!1 + n+1 + n+1n+2 + n+1n+2n+3} \\ & = \sum_{n=1}^{ \dfrac{n^2+5n+5}{n!n^3+7n^2+15n+10} \\ & = \sum_{n=1}^{ \dfrac{\cancel{n^2+5n+5}}{n!\cancel{n^2+5n+5}n+2} \\ & = \sum_{n=1}^{ \dfrac{1}{n!n+2} \times \color{red}{\dfrac{n+1}{n+1}} \\ & = \sum_{n=1}^{ \dfrac{n+1}{n+2!} \\ & = \sum_{n=1}^{ \dfrac{n+2-1}{n+2!} \\ & = \sum_{n=1}^{ \dfrac{1}{n+1!}-\dfrac{1}{n+2!} \\ & = \left\dfrac{1}{2!}-\dfrac{1}{3!}\right+\left\dfrac{1}{3!}-\dfrac{1}{4!}\right+\cdots+\left\dfrac{1}{ \\ & = \dfrac{1}{2!}-\dfrac{1}{ \end{aligned}$$Jadi, hasil dari perhitungannya adalah $\boxed{\dfrac{1}{2!}-\dfrac{1}{ [collapse] Tidakmungkin Putra mengendarai lebih dari satu kendaraan dalam waktu bersamaan. Banyaknya cara Putra berangkat dari rumah ke sekolah merupakan banyak cara mengendarai sepeda + banyak cara mengenadari sepeda motor + banyak cara mengendarai mobil = 2 + 3 + 3 = 8 cara. Notasi Faktorial Contohnya n ∈ himpunan bilangan asli.
Bentuk faktorial dari perkalian bilangan asli 8 x 7 x 6 adalah …. A. 8!/7! B. 8!/6! C. 8!/5! D. 8!/4! E. 8!/3!Pembahasan8 x 7 x 6 Jawaban C-Jangan lupa komentar & sarannyaEmail nanangnurulhidayat

MasEdi Juni 6, 2022. Hai sobat Belajar MTK - Salah satu jenis energi yang sering dipelajari adalah energi kinetik dan untuk memahaminya, diperlukan pemahaman seputar rumus energi kinetik dan contoh soalnya. Energi bersifat .

Contents1 Faktorial Pengertian, Rumus Dan Contoh Soalnya Fungsi Faktorial Dalam Kehidupan Contoh Penggunaan Share thisFaktorial – Di dalam matematika yang dimaksud dengan faktorial adalah perkalian yang berurutan, yang dimulai dari angka 1 sampai dengan angka yang dimaksud. Pengertian lainnya faktorial dari bilangan asli n merupakan hasil perkalian, diantara bilangan bulat yang positif. Yang kurang dari atau sama dengan lebih memahami faktorial, simak contoh berikut ini Berapakah nilai faktorial dari 3?Cara menghitungnya adalah sobat harus membuat perkalian berurutan dari angka 1 sampai 31 x 2 x 3 = 6Jadi nilai faktorial dari 3 adalah 6Nah dalam matematika faktorial dari n bilangan ditulis sebagai n!Bentuk dari n faktorial juga bisa ditulis sebagai berikutn! = 1 x 2 x … x n-2 x n-1 x nBerikut ini adalah faktorial 0 sampai faktorial 100! = 11! = 12! = 1 Γ— 2 = 23! = 1 Γ— 2 Γ— 3 = 64! = 1 Γ— 2 Γ— 3 Γ— 4 = 245! = 1 Γ— 2 Γ— 3 Γ— 4 Γ— 5 = 1206! = 1 Γ— 2 Γ— 3 Γ— 4 Γ— 5 Γ— 6 = 7207! = 1 Γ— 2 Γ— 3 Γ— 4 Γ— 5 Γ— 6 Γ— 7 = 50408! = 1 Γ— 2 Γ— 3 Γ— 4 Γ— 5 Γ— 6 Γ— 7 Γ— 8 = 403209! = 1 Γ— 2 Γ— 3 Γ— 4 Γ— 5 Γ— 6 Γ— 7 Γ— 8 Γ— 9 = 36288010! = 1 Γ— 2 Γ— 3 Γ— 4 Γ— 5 Γ— 6 Γ— 7 Γ— 8 Γ— 9 Γ— 10 = 3628800Dilihat dari contoh tersebut di atas kesimpulannya, nilai dari faktorial ini sangat besar. Sehingga untuk memudahkannya anda juga bisa menggunakan Faktorial Dalam Kehidupan Sehari-HariDi dalam matematika faktorial biasanya digunakan untuk menghitung jumlah atau banyaknya susunan objek, yang bisa dibentuk dari sekumpulan angka tanpa harus memerhatikan bagaimana Penggunaan FaktorialTerdapat 4 buah digit angka yaitu 1, 2, 3, 4. Dari keempat angka tersebut berapakah jumlah susunan yang dapat dibentuk dari keempat digit angka tersebut?Untuk menjawab pertanyaan tersebut sobat dapat menggunakan rumus faktorial. Jumlah digit angka sebanyak 4 maka jumlah susunan yang bisa dibentuk adalah 4!4! = 1 Γ— 2 Γ— 3 Γ— 4 = 24Jadi jumlah susunan angka yang dapat dibentuk adalah 24 susunan. Jika sobat tidak percaya maka sobat dapat mencari susunannyaKe-24 susunan angka tersebut adalah sebagai berikut1234, 1243, 1324, 1342, 1423, 14322134, 2143, 2314, 2341, 2413, 24313124, 3142, 3214, 3241, 3412, 34214123, 4132, 4213, 4231, 4312, 4321Sekian pembahasan mengenai faktorial yang mencakup pengertian, rumus dan contoh soalnya lengkap. Semoga artikel ini dapat dipahami dan dipelajari dengan baik. Dan bisa membantu anda dalam menyelesaikan soal dalam hitungan Juga Rumus Kecepatan Jarak Dan Waktu Serta Contoh Soalnya LengkapCiri-Ciri Planet dalam Tata Surya Beserta Karakteristiknya Lengkap
Daribilangan nol sebagai titik pangkalnya, kita melangkah 5 satuan ke arah kanan positif kemudian dilanjutkan dengan 7 satuan ke kanan lagi sebagai wujud dari penjumlahannya tersebut. kemudian hasil penjumlahannya tersebut ialah jarak dari titik pangkal nol ke posisi terakhir, yaitu: 12. Hitunglah hasil perkalian dari bilangan positif berikut :
Tentukan bentuk faktorial dari perkalian bilangan asli berikut! a. 18 x 17 x 16 x 15 b. 7 x 6 x 5 / 2 x 1 - Mas Dayat Tentukan bentuk faktorial dari perkalian bilangan asli berikut! a. 12 x 11 x 10 x 9 x 8 b. 10 x 9 x 8 x 7 / 3 x 2 x 1 - Mas Dayat Soal 5. Tentukan bentuk faktorial dari perkalian bilangan asli heribut a. 12 xx11 xx10 xx9xx8 b Bentuk faktorial dari perkalian bilangan asli 8 x 7 x 6 x 5 adalah - Mas Dayat MeetTheMath nyatakan dalam notasi faktorial 12x11x10x9 - Bentuk faktorial dari perkalian bilangan asli 8 x 7 x 6 x 5 adalah - Mas Dayat 20+ Contoh Soal Faktorial dan Jawaban Soal 5. Tentukan bentuk faktorial dari perkalian bilangan asli heribut a. 12 xx11 xx10 xx9xx8 b Blog Kita kita Februari 2015 20+ Contoh Soal Faktorial dan Jawaban Blog Kita kita Februari 2015 20+ Contoh Soal Faktorial dan Jawaban Notasi Faktorial Adalah Nilai Faktorial 3 + 4 Adalah Faktorial - Cara Menyatakan Notasi Faktorial Cara Menghitung Nilai Faktorial - YouTube 20+ Contoh Soal Faktorial dan Jawaban Bentuk dari 15Γ—14Γ—13Γ—12Γ—11 jika dinyatakan dalam notasi faktorial BELAJAR MATEMATIKA SMK BERSAMA KANG WAWAN MURI FAKTORIAL Nilai Faktorial Dari 4 Adalah Tentukan hasil dari faktorial berikut! a. 9!/9 – 4! b. 12!/15 – 6! - Mas Dayat 20+ Contoh Soal Faktorial dan Jawaban Cara Mencari Nilai Faktorial dan Contoh Soalnya 20+ Contoh Soal Faktorial dan Jawaban Tentukan hasil dari faktorial berikut! a. 9!/9 – 4! b. 12!/15 – 6! - Mas Dayat Aturan Perkalian, Aturan Penjumlahan, dan Faktorial ~ Konsep Matematika KoMa Notasi Faktorial Adalah BELAJAR MATEMATIKA SMK BERSAMA KANG WAWAN MURI FAKTORIAL Definisi dan Notasi Faktorial Materi, Soal & Pembahasan - YouTube 20+ Contoh Soal Faktorial dan Jawaban Contoh Soal Notasi Faktorial – Dengan Tentukan bentuk faktorial dari perkalian berikut. A. 6Γ—5Γ—4Γ—3Γ—2Γ—1 Notasi Faktorial Pada Kaidah Pencacahan Matematika Bersama DR Taufiq H - YouTube Soal 7^2xx2^-3xx5^3-5^2xx7^1xx2^2/7^2xx2^-1xx5^2 20+ Contoh Soal Faktorial dan Jawaban Contoh Soal Notasi Faktorial – Dengan Konsep Permutasi Dan Kombinasi Contoh Soal Faktorial 20+ Contoh Soal Faktorial dan Jawaban ZenBot Contoh Soal Notasi Faktorial – Dengan FAKTORIAL. - ppt download Contoh Soal Faktorial Suatu Bilangan Asli PDF Faktorial - Cara Menyatakan Notasi Faktorial Cara Menghitung Nilai Faktorial - YouTube Notasi Faktorial 5 + 2 Adalah Contoh Soal Notasi Faktorial – Dengan Contoh Soal Faktorial Soal Selesaikan perkalian bilangan berpangkat bulat 5p^5xx3p^-5 20+ Contoh Soal Faktorial dan Jawaban BELAJAR MATEMATIKA SMK BERSAMA KANG WAWAN MURI FAKTORIAL Contoh Soal Notasi Faktorial – Dengan 20+ Contoh Soal Faktorial dan Jawaban Cara menentukan nilai n pada bentuk faktorial - YouTube Faktorial Lembaga Pelatihan Olimpiade Sains Faktorial Notasi faktorial banyak digunakan dalam kombinatorik. … Permutasi siklik adalah ketika susunan objek dilakukan secara siklik, atau memutar. - [PDF Document] Contoh Soal Notasi Faktorial – Dengan tolong dong dinyatakan dalam bentuk Faktorial! - BELAJAR MATEMATIKA SMK BERSAMA KANG WAWAN MURI FAKTORIAL Nyatakan ke dalam notasi faktorial 20+ Contoh Soal Faktorial dan Jawaban Soal Berapakah jumlah tiga digit pertama dari 2^2006xx5^2xx102? tentukan hasil perkalian pecahan pecahan berikut dengan cara nya​ - Contoh Soal Notasi Faktorial – Dengan Blog Kita kita Februari 2015 Faktorial Matematika Beserta Contoh Soal dan Jawaban - PINTERPandai Matematika, Tulisan, Pengetahuan Notasi Faktorial n ! = nn - 1 n -2 Definisi 0! = 1 - ppt download Persamaan Faktorial - Cara Menentukan Nilai n dari Persamaan Faktorial - YouTube Bab II Peluang PDF Contoh Soal Notasi Faktorial – Dengan 18++ Contoh Soal Peluang Notasi Faktorial - Kumpulan Contoh Soal KONSEP DASAR PROBABILITAS - ppt download Soal dan Pembahasan - Faktorial - Mathcyber1997 Soal 25 Sebuah situs try out meminta penggunanya membuat sandi yang hanya memuat angka berbeda. Hasil Dari 4 Faktorial Adalah 18++ Contoh Soal Peluang Notasi Faktorial - Kumpulan Contoh Soal Contoh Soal Notasi Faktorial – Dengan Bentuk faktorial dari perkalian bilangan asli Faktorial suatu bilangan asli - YouTube hitung nilai notasi faktorial 4! 5! per 2! 3!​ - nyatakan dalam notasi faktorial! ​ - Soal Nilai dari 3xx2^-11+5xx2^-11/4^-6=dots ATURAN PENCACAHAN DAN PERMUTASI. Tujuan Pembelajaran Kaidah Pencacahan Permutasi - Materi Lengkap Matematika Contoh Soal Notasi Faktorial – Dengan Soal Bentuk faktorial dari perkalian bilangan asli 8xx7xx6xx5 adalah Kaidah Pencacahan Permutasi - Materi Lengkap Matematika Soal dan Pembahasan - Faktorial - Mathcyber1997 Konsep Permutasi Dan Kombinasi Bentuk faktorial dari perkalian bilangan asli Faktorial suatu bilangan asli - YouTube notasi sigma nyatakan dalam notasi faktorial​ - LKS PERMUTASI dan KOMBINASI - PDF Download Gratis Lembaga Pelatihan Olimpiade Sains Faktorial Notasi faktorial banyak digunakan dalam kombinatorik. … Permutasi siklik adalah ketika susunan objek dilakukan secara siklik, atau memutar. - [PDF Document] PELUANG. Kegiatan Belajar 1 Kaidah Pencacahan, Permutasi dan kombinasi Contoh soal faktorial dan penyelesaiannya – Materi Kelas 12 Jurusan IPS Yang bisa Tolong jawab ya,, - 1629771027809_PERTEMUAN-II-STATMAT PDF 20+ Contoh Soal Faktorial dan Jawaban Soal 12 Bentuk faktorial dari perkalian bilangan asl 9xx8xx7xx6 adalah…. PDF MATERI PELUANG Rifal Ahmad - ASSALAMUALAIKUM WR WB By Weni kusumaningrum a 410090260 5 Tentukan hasil perkalian bilangan berikut ini!a.(3Γ—10^-4)Γ—(2Γ—10^-4)
Dalammatematika, faktorial dari bilangan asli n adalah hasil perkalian antara bilangan bulat positif yang kurang dari atau sama dengan n. Faktorial ditulis sebagai n! dan disebut n faktorial. Sebagai contoh, 7! adalah bernilai 7Γ—6Γ—5Γ—4Γ—3Γ—2Γ—1 = 5040. Fungsi faktorial didefinisikan sebagai: Selain definisi tersebut, terdapat juga definisi

bentukaljabar suku dua (a + b)n, dengan n bilangan asli. Perhatikan uraian berikut. Tentukan hasil pembagi bentuk aljabar berikut: a. 42p : 7pq. b. 16p 5 q 3: 4p 2 q. 5. bentuk aljabar adalah menyatakan bentuk penjumlahan menjadi suatu perkalian dari bentuk aljabar tersebut . Ada beberapa faktorisasi bentuk aljabar antara lain:

Berukutbeberapa Bentuk Bilangan Eksponensial di antaranya: A. Bilangan Eksponensial Nol (0) Jika a β‰  0 maka a = 1 atau a akan bertindak secara bersamaan dengan angka 0 . contohnya: 3 =1; 7 =1; 128 =1; y =1; B. Bilangan Eksponensial Negatif. Jika m atau n bentuk dari bilangan bulat yang negatif maka . contohnya: 3-4 = 1/3 4 = 1/81; a-n = 1/a n
Bentukfaktorial didefinisikan , untuk . Jadi. a. b. Dengan demikian, diperoleh a. dan b. . Mudah-mudahan jawaban dan pembahasan diatas bisa membuatmu mendapatkan jawaban yang benar dari pertanyaan Tentukan Bentuk Faktorial Dari Perkalian Bilangan Asli Berikut. u1JMIF.
  • 865yhyg86w.pages.dev/406
  • 865yhyg86w.pages.dev/30
  • 865yhyg86w.pages.dev/558
  • 865yhyg86w.pages.dev/704
  • 865yhyg86w.pages.dev/358
  • 865yhyg86w.pages.dev/655
  • 865yhyg86w.pages.dev/817
  • 865yhyg86w.pages.dev/97
  • 865yhyg86w.pages.dev/46
  • 865yhyg86w.pages.dev/635
  • 865yhyg86w.pages.dev/228
  • 865yhyg86w.pages.dev/78
  • 865yhyg86w.pages.dev/334
  • 865yhyg86w.pages.dev/773
  • 865yhyg86w.pages.dev/863
  • tentukan bentuk faktorial dari perkalian bilangan asli berikut